Что такое гипоидная передача в автомобиле и ее особенности

Гипоидная шестерня

Ваз 2110 с хрустом включается задняя передача. Ваз 2112 при включении задней передачи происходит хруст так же и при

Такие гипоидные передачи применять не рекомендуется. Гипоидная шестерня с правым наклоном зуба увеличивается в размерах при смещении ее выше оси колеса и уменьшается при смещении ниже оси.  

На некоторых отечественных грузовых автомобилях ( ГАЗ-53А) и автобусах ( ПАЗ-672) одинарная главная передача имеет шестерни с гипоидным зацеплением. Гипоидная шестерня представляет собой усеченный гиперболоид вращения, на поверхности которого нарезаны зубья. Гипоидная передача отличается тем, что оси ведущей и ведомой шестерен не пересекаются между собой, а проходят на некотором расстоянии одна от другой, при этом угол наклона винтовой линии зубьев ведущей шестерни значительно больше, чем ведомой. Вследствие этого размер ведущей шестерни при том же размере ведомой шестерни ( по сравнению с другими передачами) значительно возрастает. Шестерни гипоидных передач имеют большую толщину и рабочую высоту зубьев, а при работе среднее число зубьев, одновременно находящихся в зацеплении, у них выше. Благодаря этому повышается срок службы гипоидных шестерен, а их работа протекает более плавно и бесшумно.  

Все штанги в точках вращения или снабжены сайлент-блоками, или коническими резиновыми втулками особой конструкции, которые находятся под действием осевого сжимающего усилия. Главная передача имеет гипоидные шестерни.  

Главная передача имеет гипоидные шестерни. Колеса с проволочными спицами закреплены на центральной втулке. Картеры ведущих мостов или полуразгруженные полуоси нужно рассчитывать на динамические нагрузки, возникающие при езде по неровной дороге. Опыты показали, что при наезде автомобиля, имеющего сплошные шины, на препятствие высотой 25 мм при скорости движения 25 км / час создается нагрузка на колесо, которая в 7 раз больше статического давления на грунт.  

Например, Таул упоминает, что в Англии гипоидные шестерни были впервые применены в 1929 г. для легковых автомобилей серийного производства и только с 1934 г. их стали применять и на других моделях. Великобритании, были снабжены гипоидными мостами и только в 41 модели были использованы конические косозубые шестерни.  

Поскольку в гипоидных передачах две металлические поверхности подвергаются действию скольжения и качения, то вопрос об их смазке приобрел еще более серьезное значение, чем в случае применения зубчатых колес с эвольвентным профилем зубьев. На практике скоро убедились в том, что смазывать гипоидные шестерни минеральным маслом без присадки, особенно в тяжелых эксплуатационных условиях, невозможно.  

Эти два вида трения могут иметь место одновременно, например в гипоидных шестернях.  

Положение контактного пятна.  

Сборка цилиндрических пар шестерен не вызывает особых трудностей, поскольку эти сопряжения не регулируются. Значительно большей трудоемкости требует сборка главной передачи заднего моста со спирально-коническими или гипоидными шестернями и раскомплектованных конических шестерен.  

Масла специальные ( ГОСТ 4002 — 53 и 4003 — 53) содержат осернен-ные компоненты, вводимые с целью повышения прочности масляной пленки на рабочих поверхностях шестерен. Предназначаются эти масла для применения в автомобилях с сильно нагруженными механизмами трансмиссии. Для главных передач автомобилей с гипоидными шестернями применение каких-либо иных масел, кроме масла, специально выпускаемого для гипоидных передач ( ГОСТ 4003 — 53), не допускается, так как ведет к быстрому износу шестерен.  

Схемы и тяговые характеристики-трансмиссии с механической коробкой передач ( кривые / и 2 — соответственно тяговые усилия на 1 — й и 2 — й передачах.  

Схема трансмиссии показана на рис. 36, а. От двигателя крутящий момент передается на сухое дисковое сцепление, которое через поводковый патрон вращает шестерню коробки передач. Передвижной блок шестерен коробки приводит в движение основной вал и позволяет двигаться погрузчику передним или задним ходом. При движении в обоих направлениях вращение передается валу, соединенному с гипоидной шестерней. Кривая тягового усилия в зависимости от скорости движения погрузчика показана на том же рисунке. Она подобна кривой крутящего момента в зависимости от режима работы двигателя. При режимах работы до точки / проскальзывание сцепления не позволяет увеличивать скорость движения.  

Одинарные главные передачи

Одинарные главные передачи состоят из одной пары шестерен.

Цилиндрическая главная передача применяется в переднеприводных легковых автомобилях при поперечном расположении двигателя и размещается в общем картере с коробкой передач и сцеплением (см. Двухвальные коробки передач ВАЗ и АЗЛК рисунок 2). Ее передаточное число равно 3,5…4,2, а шестерни могут быть прямозубыми, косозубыми и шевронными. Цилиндрическая главная передача имеет высокий КПД — не менее 0,98, но она уменьшает дорожный просвет у автомобиля и более шумная.

Коническая главная передача (рисунок 2, а) применяется на легковых автомобилях и грузовых автомобилях малой и средней грузоподъемности. Оси ведущей 1 и ведомой 2 шестерен в конической главной передаче лежат в одной плоскости и пересекаются, а шестерни выполнены со спиральными зубьями. Передача имеет повышенную прочность зубьев шестерен, небольшие размеры и позволяет снизить центр тяжести автомобиля. КПД конической главной передачи со спиральным зубом 0,97…0,98. Передаточные числа конических главных передач 3,5…4,5 у легковых автомобилей и 5…7 у грузовых автомобилей и автобусов.

Рисунок 2 — Главные передачи а, б, в — одинарные; г, д — двойные; е — редуктор; 1 — ведущая шестерня; 2 — ведомая шестерня; 3 — червяк; 4 — червячная передача; 5 — коническая шестерни; 6 — цилиндрические шестерни; 7 — полуось; 8 — солнечная шестерня; 9 — сателлит; 10 — ось; 11 — коронная шестерня; l – гипоидное смещение

Гипоидная главная передача (рисунок 2, б) имеет широкое применение на легковых и грузовых автомобилях. Оси ведущей 1 и ведомой 2 шестерен гипоидной главной передачи в отличие от конической не лежат в одной плоскости и не пересекаются, а перекрещиваются. Передача может быть с верхним или нижним гипоидным смещением l. Гипоидная главная передача с верхним смещением используется на многоосных автомобилях, так как вал ведущей шестерни должен быть проходным, а на переднеприводных автомобилях — исходя из условий компоновки. Главная передача с нижним гипоидным смещением широко применяется на легковых автомобилях.

Передаточные числа гипоидных главных передач легковых автомобилей 3,5…4,5, а грузовых автомобилей и автобусов 5…7. Гипоидная главная передача по сравнению с другими более прочная и бесшумная, имеет высокую плавность зацепления, малогабаритная и ее можно применять на грузовых автомобилях вместо двойной главной передачи. Она имеет КПД, равный 0,96…0,97. При нижнем гипоидном смещении имеется возможность ниже расположить карданную передачу и снизить центр тяжести автомобиля, повысив его устойчивость. Однако гипоидная главная передача требует высокой точности изготовления, сборки и регулировки. Она также требует из-за повышенного скольжения зубьев шестерен применения специального гипоидного масла с сернистыми, свинцовыми, фосфорными и другими присадками, образующих на зубьях шестерен прочную масляную пленку.

Червячная главная передача (рисунок 2, в) может быть с верхним или нижним расположением червяка 3 относительно червячной шестерни 4, имеет передаточное число 4…5 и в настоящее время используется редко. Ее применяют на некоторых многоосных многоприводных автомобилях. По сравнению с другими типами червячная главная передача меньше по размерам, более бесшумна, обеспечивает более плавное зацепление и минимальные динамические нагрузки. Однако передача имеет наименьший КПД (0,9…0,92) и по трудоемкости изготовления и применяемым материалам (оловянистая бронза) является самой дорогостоящей.

Устройство и работа двойных главных передач КамАЗ-5320

Двойная главная передача среднего ведущего моста автомобиля КамАЗ-5320 (рис.2) выполнена с проходным валом для привода главной передачи заднего моста. Ведущая коническая шестерня 20 установлена в горловине картера главной передачи на двух роликовых конических подшипниках 24, 2в, между внутренними обоймами которых имеются распорная втулка и регулировочные шайбы 25. Шлифованный конец ступицы этой шестерни соединен с конической шестерней межосевого дифференциала, а внутри ступицы проходит вал 21 привода, одним концом соединенный с конической шестерней межосевого дифференциала, а другим при помощи карданной передачи с ведущим валом главной передачи заднего моста.

Промежуточный вал опирается одним концом на два конических роликовых подшипника 7, между внутренними обоймами которых имеются регулировочные шайбы 4, а другим на роликовый подшипник, установленный в расточке перегородки картера главной передачи. Конические роликовые подшипники 7 фиксируют промежуточный вал от смещения в осевом направлении. Заодно с промежуточным валом выполнена ведущая цилиндрическая шестерня 3 с косыми зубьями. Ведомая коническая шестерня 1 напрессована на конец промежуточного ведомую цилиндрическую шестерню 16. Крутящий момент от корпуса межколесного дифференциала, к которому прикреплена ведомая цилиндрическая шестерня 16 главной передачи, передается на крестовину 15, а от нее через сателлиты на шестерни полуосей. Сателлиты, действуя с одинаковой силой на правую и левую шестерни полуосей, создают на них равные крутящие моменты.

При этом благодаря незначительному внутреннему трению равенство моментов практически сохраняется как при неподвижных сателлитах, так и при их вращении.

Поворачиваясь на шипах крестовины, сателлиты обеспечивают возможность вращения правой и левой полуосей, а следовательно, и колес с разными частотами.

Общее устройство главной передачи заднего ведущего моста (рис.3) аналогично рассмотренному выше. Отличия объясняются главным образом тем, что задний ведущий мост не проходной и получает крутящий момент от межосевого дифференциала, установленного на среднем ведущем мосту.

В главной передаче заднего моста ведущая коническая шестерня 21 отличается от аналогичной шестерни среднего моста тем, что ее ступица короче и имеет внутренние шлицы для соединения с ведущим валом 22 главной передачи заднего моста. Опорные конические роликовые подшипники 18 и 20 взаимозаменяемы с соответствующими подшипниками среднего ведущего моста. Ведущий вал главной передачи заднего моста задним концом опирается на один роликовый подшипник, установленный в расточке картера. Для циркуляции смазки около подшипника в горловине картера имеется канал. С торца подшипник закрыт крышкой. Остальные детали главной передачи среднего и заднего ведущих мостов аналогичны по устройству.

2.3. Устройства и работа двойных главных передач ведущих мостов автомобиля КамАЗ-5320

Картер главной передачи 3 (рис.4) крепится к балке моста болтами. Плоскость разъема уплотняется паронитовой прокладкой толщиной 0,8 мм. В полости картера устанавливаются пара цилиндрических с косыми зубьями шестерен. Ведущая коническая шестерня 13 установлена на шлицах ведущего проходного вала 15 (для среднего моста). Этот вал опирается на два конических роликовых подшипника 12 и 18, которые закрыты крышками, имеющими регулировочные прокладки 11 и 16. Выходные концы вала уплотняются самоподжимными сальниками, защищенными грязеотражательными кольцами. На концах проходного вала (для среднего моста) устанавливаются фланцы карданных шарниров 10, 17. Фланец 17 привода к заднему мосту меньше по размерам, чем фланец 10, на который подводится крутящий момент от межосевого дифференциала раздаточной коробки.

Промежуточный вал 9 главной передачи установлен на цилиндрическом роликовом 2 и двух конических роликовых подшипниках 6, смонтированных в стакане 5. Под фланец стакана и крышку подшипников поставлены регулировочные прокладки 7 и 8. Ведущая цилиндрическая шестерня 4 выполнена заодно с промежуточным валом, а ведомая коническая шестерня 1 напрессована на конец этого вала и дополнительно закреплена на нем шпонкой. Ведомая цилиндрическая шестерня 22 соединена с половинами (чашками) корпуса дифференциала, каждая из которых опирается на конический подшипник.

Достоинства

В чем же ее достоинства по сравнению с остальными двумя типами передач? Среди основных мастера выделяют ее практически бесшумную работу (из-за того, что одновременно в зацепленном состоянии находятся несколько зубьев) и большую прочность (увеличен средний диаметр шестерни) по сравнению с канонической передачей.

Это достигается благодаря расположению зубчатых колес: не пересекающемуся, а перекрещивающемуся. Кроме того, уменьшена нагрузка, которую испытывает один зубец, благодаря этому работа всех шестеренок более надежна и долговечна.

Автомобили, в которых использована гипоидная передача отличает, ко всему прочему, еще устойчивость и плавность хода. Эти характеристики для автолюбителей играют едва ли не первостепенную роль при выборе «железного коня», и всегда находятся на особом контроле у автомобильных концернов, которые постоянно совершенствуются в направлении улучшения не только «мозга» машины, но и комфортности езды.

Поэтому гипоидную версию вы чаще всего можете наблюдать в автомобилях представительского класса. Таких как «Инфинити», «Лексус» и др. Больше того, зубья гипоидной передачи характеризуются большей сопротивляемостью усталости, если сравнивать с конической передачей. Но там, где есть плюсы, встречаются и минусы.

Редукторэлектродвигатель

KM 063 В — 20.25 — FA1 — SS1 — 71B5 B3 — 0.37-4P / 1

КМ 063 В 20.25 FA1 SS1 71B5 B3 0.37-4P / 1
1 2.1; 2.2 3 4 5 6 7 8 9
Расшифровка Comments
1 Обозначение серии: КМ Code for gear units series: KM
2.1 Типоразмер 050, 063, 075, 090, 110, Specification code of gear units 050 063 075 090 110
2.2 В:2-х ступенчатый С: 3-х ступенчатый 1 .B:Means 2 stages 2.C:Means 3 stages
3 Передаточное соотношение Speed ratio of reducer i
4 Отсутствие маркировки означает отсутствие выходного фланца 2.FA,FB,FC,FD,FE(1/2) 1 .No mark means without output flange 2.FA4 FB4 FC4 FD4 FE(1/2):output Flange and position
5 Отсутствие маркировки означает отсутствие выходного вала. SS(1/2) выходной вал на одну из сторон

DS — двухсторонний выходной вал.

1 .No mark means hole output 2.SS(1/2):Single output shaft and position 3.DS:Double output shaft
6 1. Габарит входного (двигательного) фланца 2. HS обозначает наличие входного быстроходного вала 1.Input flange code(63B5s 71В5ч 71B14 ) 2. HS:means shaft input
7 Вариант расположения (способ монтажа) Installation position code
8 1.Отсутствие маркировки означает отсутствие мотора 2. Мощность электродвигателя и количество полюсов 1 .No mark means without motor 2.Model motors(poles of power)
9 Вариант расположения клеммной коробки электродвигателя Position diagram for motor terminal box default position 1 not to write out is ok

При заказе сообщите менеджеру компании нужна ли комплектация редуктора электродвигателем. В противном случае электродвигатель не устанавливается.

* Пример: KM063C — 63.33 — FA2 — 80B5

Модификации оборудования серии КМ

Сборочный чертеж

1 Винт с шестигранником 22 Корпус 43 Подшипник 64 Прокладка
2 Входной фланец 23 Шпонка 44 Прокладка 65 Подшипник
3 Муфта сцепления 24 Шестерня-вал 45 Стопорное кольцо 66 шестерня
4 Стопорное кольцо 25 Подшипник 46 Манжет 67 Шестерня-вал
5 Подшипник 26 Подшипник 47 Выходной фланец 68 Шпонка
6 Стопорное кольцо 27 Пробка 48 Винт с шестигранником 69 Пробка
7 Манжет 28 Стопорное кольцо 49 Манжет 70 Стопорное кольцо
8 Пробка 29 Шестерня-вал 50 Стопорное кольцо 71 Уплотнительная прокладка
9 Винт с шестигранником 30 Стопорное кольцо 51 Подшипник 72 Шпонка
10 Корпус 31 Шайба 52 Пробка 73 Шпонка
11 Манжет 32 Прокладка 53 Корпус 74 Двухсторонний вал
12 Винт с шестигранником 33 Подшипник 54 Пробка 75 Шпонка
13 Крышка 34 Винт с шестигранником 55 Распорная втулка 76 Шпонка
14 Шпонка 35 Корпус 56 Шестерня 77 Уплотнительная прокладка
15 Муфта сцепления? 36 Пробка 57 Шпонка 78 Стопорное кольцо
16 Подшипник 37 Подшипник 58 Вал с отверстием 79 Стопорное кольцо
17 Стопорное кольцо 38 Шпонка 59 Подшипник 80 Уплотнительная прокладка
18 Подшипник 39 Шестерня-вал 60 Стопорное кольцо 81 Шпонка
19 Стопорное кольцо 40 Клапан-сапун 61 Манжет 82 Односторонний выходной вал
20 Винт с шестигранником 41 Табличка 62 Манжет 83 Шпонка
21 Пробка 42 Пробка 63 Стопорное кольцо 84 Шпонка

KM.. (IEC).. / Параметры производительности

P1n = 0.12; 0.18; 0.25 P1n = 0.37; 0.55; 0.75 P1n = 1.1; 1.5; 2.2 P1n = 3.0; 4.0; 5.5; 7.5

Типы смазки и объем заливаемого масла

Окружающая температура (С?) ISO Класс Вязкости SHELL MOBIL BP Тип смазки
KM.. -10 ~ +40 VG220 Shell Omala 220 Mobil gear 630 BP Energol GX-XP 220 Минеральные масла
-20 ~ +25 VG150 VG100 Shell Omala 100 Mobil gear 627 BP Energol GX-XP 100
-30 ~ +10 VG110-46 VG32 Shell Omala T32 Mobil D.T.E. 13M
-40 ~ -20 VG22 VG15 Shell Omala T15 Mobil D.T.E. 11M BP Energol HLP-HM 15
-40 ~ +80 VG220 Shell Omala HD220 Mobil SHC630 Синтетические масла
-40 ~ +40 VG150 Mobil SHC629
-40 ~ +10 VG32 Mobil SHC624
Gear units Объем заливаемого масла в литрах — (L)
B3 B6 B7 B8 V5 V6
KM050B 0.32 0.3 0.2 0.2 0.35 0.25
KM050C 0.48 0.46 0.45 0.48 0.52 0.46
KM063B 0.6 0.56 0.4 0.42 0.62 0.4
KM063C 1.1 1 1 1.1 1.3 0.9
KM075B 0.9 0.7 0.65 0.9 1.2 0.7
KM075C 1.5 1.5 1.45 1.5 1.8 1.45
KM090B 1.5 1.3 1.2 1.2 1.8 1.25
KM090C 2.5 2.3 2.1 2.45 2.8 2.2
KM110B 2.5 2.2 1.9 2.1 3 2
KM110C 4.7 4.5 4.3 4.7 5 4.5

Другие важные характеристики оборудования

  • Возможные геометрические комбинации
  • KM.. HS.. / Параметры производительности n1 = 1400 r/min
  • Габаритные параметры оборудования, измерительные величины
  • Позиционные схемы, монтаж и другие характеристики мотор-редукторов

Как выбрать

На рынке существует немалое количество гипоидных редукторов. Это и известные фирмы, и — наоборот. Так как же выбрать механизм? В этом поможет квалифицированный сотрудник т.к. неправильные расчеты могут стать причиной поломки редуктора и сопутствующего оборудования. Грамотный выбор редуктора поможет избежать дальнейших затрат на ремонт и покупку нового оборудования. Основными характеристиками для выбора редуктора являются его габариты или типоразмер, передаточное отношение и кинематическая схема.

Как правило, редуктор с гипоидной передачей служит 10-15 лет. Сейчас тяжело купить «плохой» механизм, который будет служить меньше. Это объясняется схожими технологиями производства.

Можно опираться на цену, ведь, как принято считать, чем дороже, тем лучше. Однако чаще вы переплачиваете за бренд, нежели за качество. Ведь практически все корпуса гипоидных редукторов изготовлены из прочного алюминия, а подвески вала выполняют из литья или из стали. Но, так как для изготовления гипоидных редукторов, используют сложные технологии, их стоимость довольно высокая.

Преимущества и недостатки гипоидной передачи

Данный тип передач получает всё большее распространение в автомобилестроении. Изначально они применялись только в премиальных моделях, но сегодня их можно встретить и в более дешёвых вариантах транспортных средств. Происходит это благодаря очень хорошим показателям при эксплуатации.

К основным преимуществам гипоидных передач можно отнести

  • Хорошая износоустойчивость. За счёт специфического строения зубьев достигается заметное снижение нагрузки, которая приходится на один зубчик, а значит, шестерёнки будут работать дольше.
  • Удалось существенно опустить карданный вал и уменьшить его канал в салоне. Это дало возможность равномерно распределить центр тяжести транспортного средства, а также улучшило его устойчивость.
  • Такие авто имеют очень хорошую устойчивость и плавный ход, что тоже очень ценится у современных водителей.
  • Очень низкий уровень шума. Этот эффект достигается за счёт того, что при работе главной передачи происходит одновременное зацепление сразу нескольких зубьев. Владельцы таких автомобилей отмечают отличный акустический эффект и управление машиной становится гораздо комфортнее.

Недостатки

К сожалению, наряду с неоспоримыми преимуществами в этой конструкции можно отметить и недостатки.

  • Самым главным недостатком гипоидной передачи можно считать её высокую стоимость. Это обусловлено сложностью изготовления и необходимостью очень тонкой подгонки шестеренок. Если данное условие не будет соблюдено шестерёнки, скорее всего, заклинит. Кроме того, для производства деталей требуется материал очень высокого качества, что тоже повышает стоимость конструкции.
  • Другим минусом является довольно высокая вероятность заедания шестерёнок. Особенно часто данное явление можно наблюдать при применении гипоидной передачи в редукторе автомобиля. Заедания чаще всего являются результатом проскальзывания зубьев вдоль контактной линии. Кроме того, на возможность заклинивания может повлиять некачественная сборка и подгонка шестеренок или же использование материалов низкого качества при их изготовлении.
  • Отдельно причиной заедания шестерёнок может стать резкая смена направления вращения или же включение задней передачи. Здесь водителю нужно быть очень внимательным и в случае, если автомобиль застрянет на плохой дороге, вытягивать его можно будет только вперёд. При выдергивании автомобиля задним ходом возникает очень большая вероятность не простого заклинивания, а даже поломки зубьев.

Во всем мире получила широкое распространение маркировка трансмиссионных смазок по индексу вязкости – SAE. Разработанный в Соединенных Штатах, стандарт SAE J306 разделяет смазочные жидкости для трансмиссий, в зависимости от вязкости при эксплуатации автотранспорта в условиях предельных температур: низких и высоких. По этой квалификации можно определить диапазон температур, в котором разрешается применять определенную смазку для механической КПП и ведущих мостов.

Рекомендации по вязкости трансмиссионных масел, которые могут применяться для МКПП и ведущих мостов автомобиля, указываются производителем в мануале пользователя. Основываясь на этих рекомендациях, владелец автомобиля выбирает трансмиссивную жидкость среди ассортимента смазочных жидкостей. Когда выбирается смазка, следует учитывать самую низкую и самую высокую температуру, при которой будет эксплуатироваться авто. Классификация SAE J306 учитывает индекс вязкости при предельных температурах.

Значение низкотемпературного предела вязкости соответствует температуре, при которой достигается динамическая вязкость по Брукфильду 150000 сантипуазов (сП). Для определения показателей проводились реальные испытания с агрегатами различных конструкций. При превышении этих значений подшипники шестерен на вале разрушались

Поэтому важно следовать рекомендациям производителей по низкотемпературному пределу применения

Значение высокотемпературного предела определяется по показаниям кинематической вязкости смазки при температуре 100 градусов. Этот показатель помогает приблизительно определить, какую нагрузку может выдержать защитная масляная пленка и насколько достаточно ее будет, чтобы защитить механизм коробки передач при значительных нагрузках и при высоких рабочих температурах.

По классификации SAE смазочные материалы делятся на 9 классов по аналогии с моторными маслами:

Всесезонные масла маркируются с применением обеих маркировок, первая идет зимняя, вторая — летняя, например, SAE 75W-85, SAE 85W-90 и т.п.

Таблица классификации по SAE трансмиссионных смазок по индексу вязкости:

См. также

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector