Механическое движение

Для чего это нужно?

Такие расчеты полезны всем. Мы все время планируем свой день и перемещения. Имея дачу за городом, есть смысл узнать среднюю путевую скорость при поездках туда.

Это упростит планирование проведения выходных. Научившись находить эту величину, мы сможем быть более пунктуальными, перестанем опаздывать.

Вернемся к примеру, предложенному в самом начале, когда часть пути автомобиль проехал с одной скоростью, а другую — с иной. Такой вид задач очень часто используется в школьной программе. Поэтому, когда ваш ребенок попросит вас помочь ему с решением подобного вопроса, вам будет просто это сделать.

Сложив длины участков пути, вы получите общее расстояние. Поделив же их значения на указанные в исходных данных скорости, можно определить время, потраченное на каждый из участков. Сложив их, получим время, потраченное на весь путь.

Ну а дальше по формуле. Объяснение кажется очень сложным, но на практике все решается в столбик за несколько минут. Попробуйте, сами в этом убедитесь.

Постоянная скорость

Описание формулы.

Самый простой случай в физике — равномерное движение. Скорость постоянна, не меняется на протяжении всего пути. Есть даже скоростные константы, сведенные в таблицы, — неизменные величины. К примеру, звук распространяется в воздухе со скоростью 340,3 м/с.

А свет — абсолютный чемпион в этом плане, он обладает самой большой в нашей Вселенной скоростью — 300 000 км/с. Эти величины не меняются от начальной точки движения до конечной. Они зависят только от среды, в которой движутся (воздух, вакуум, вода и пр.).

Равномерное движение часто встречается нам и в повседневной жизни. Так работает конвейер на заводе или фабрике, фуникулер на горных трассах, лифт (за исключением очень коротких периодов пуска и остановки).

График такого движения очень прост и представляет собой прямую линию. 1 секунда — 1 м, 2 секунды — 2 м, 100 секунд — 100 м. Все точки находятся на одной прямой.

Неравномерная скорость

К сожалению, так идеально и в жизни, и в физике бывает крайне редко. Множество процессов проходят с неравномерной скоростью, то ускоряясь, то замедляясь.

Давайте представим движение обычного междугороднего автобуса. В начале пути он разгоняется, у светофоров тормозит, а то и вовсе останавливается. Затем уже за городом едет быстрее, но на подъемах медленнее, а на спусках вновь ускоряется.

Если изобразить этот процесс в виде графика, то получится весьма замысловатая линия. Определить скорость по графику можно только для какой-то конкретной точки, а общего принципа нет.

Потребуется целый набор формул, каждая из которых подойдет только для своего участка чертежа. Но страшного ничего нет. Для описания перемещения автобуса пользуются усредненным значением.

Найти среднюю скорость движения можно все по той же формуле. Действительно, нам известно расстояние между автовокзалами, измерено время в пути. Поделив одно на другое, найдите искомую величину.

Задачи на движение

С задачами на движение мы встречаемся каждый день в обычной жизни.

Расстояние – самое большое из трех величин в задачах на движение. То есть, скорость и время всегда меньше расстояния.

Запомнили формулы, которые являются ключами к правильному решению задач?

Заполните пустые окошки в формулах:

Решим задачи на движение.

Плот двигался по реке со скоростью 5 км/ч, а катер – со скоростью 20 км/ч. Какое расстояние преодолеет плот, и какое катер за 3 часа?

Выделяем величины, чертим таблицу. Читаем задачу по частям и записываем каждую величину в нужную ячейку таблицы.

Какую из трех величин нужно найти? Верно, расстояние. Вспомним формулу: S = v ∙ t

5 ∙ 3 + 15 (км) – пройдет плот.

20 ∙ 3 = 60 (км) – пройдет катер.

Ответ: 15 км, 60 км.

Ребята участвовали в соревнованиях по бегу. Максим пробежал 200 м за 40 с, а Артем это же расстояние пробежал за 50 с. С какой скоростью бежал каждый из мальчиков?

Начертите  таблицу, как в предыдущей задаче. Запишите величины в нужные ячейки. Поставьте знак вопроса. Пользуясь формулой, решите задачу самостоятельно.

Проверь себя.

v = S t

200 : 40 = 5 (м/с) – скорость движения Максима.

200 : 5 = 4 (м/с) – скорость движения Артема.

Ответ: 5 м/с, 4 м/с.

Решим еще одну задачу.

Два всадника отправились на прогулку на лошадях Рада и Снежка. Лошади преодолели одинаковое расстояние 30 км. Но двигались с разной скоростью. Рада бежала со скоростью 10 км/ч, а Снежка – 15 км/ч. Сколько времени длилась прогулка на Раде, и сколько времени – на Снежке?

Начертите таблицу, заполните ее ячейки. Пользуясь формулой, запишите решение.

Проверь себя.

t = S : v

30 : 10 = 3 (ч) – прогулка на Раде.

30 : 15 = 2 (ч) – прогулка на Снежке.

Ответ: 3 ч, 2 ч.

Сегодня на уроке мы запомнили формулы-ключи для решения задач на движение, узнали о скорости самых медленных и самых быстрых животных, научились находить среднее арифметическое. До скорых встреч, ребята!

Как же рассчитать скорость

  • через формулу нахождения мощности;
  • через дифференциальные исчисления;
  • по угловым параметрам и так далее.

В этой статье рассматривается самый простой способ с самой простой формулой — нахождение значения этого параметра через расстояние и время. Кстати, в формулах дифференциального расчета также присутствуют эти показатели. Формула выглядит следующим образом:

  • v — скорость объекта,
  • S — расстояние, которое пройдено или должно быть пройдено объектом,
  • t — время, за которое пройдено или должно быть пройдено расстояние.

Как видите, в формуле первого класса средней школы нет ничего сложного. Подставив соответствующие значения вместо буквенных обозначений, можно рассчитать быстроту передвижения объекта. Например, найдем значение скорости передвижения автомобиля, если он проехал 100 км за 1 час 30 минут. Сначала требуется перевести 1 час 30 минут в часы, так как в большинстве случаев единицей измерения рассматриваемого параметра считается километр в час (км/ч). Итак, 1 час 30 минут равно 1,5 часа, потому что 30 минут есть половина или 1/2 или 0,5 часа. Сложив вместе 1 час и 0,5 часа получим 1,5 часа.

Теперь нужно подставить имеющиеся значения вместо буквенных символов:

v=100 км/1,5 ч=66,66 км/ч

Здесь v=66,66 км/ч, и это значение очень приблизительное (незнающим людям об этом лучше прочитать в специальной литературе), S=100 км, t=1,5 ч.

Таким нехитрым способом можно найти скорость через время и расстояние.

А что делать, если нужно найти среднее значение? В принципе, вычисления, показанные выше, и дают в итоге результат среднего значение искомого нами параметра. Однако можно вывести и более точное значение, если известно, что на некоторых участках по сравнению с другими скорость объекта была непостоянной. Тогда пользуются таким видом формулы:

vср=(v1+v2+v3+…+vn)/n, где v1, v2, v3, vn — значения скоростей объекта на отдельных участках пути S, n — количество этих участков, vср — средняя скорость объекта на всем протяжении всего пути.

Эту же формулу можно записать иначе, используя путь и время, за которое объект прошел этот путь:

  • vср=(S1+S2+…+Sn)/t, где vср — средняя скорость объекта на всем протяжении пути,
  • S1, S2, Sn — отдельные неравномерные участки всего пути,
  • t — общее время, за которое объект прошел все участки.

Можно записать использовать и такой вид вычислений:

  • vср=S/(t1+t2+…+tn), где S — общее пройденное расстояние,
  • t1, t2, tn — время прохождения отдельных участков расстояния S.

Но можно записать эту же формулу и в более точном варианте:

vср=S1/t1+S2/t2+…+Sn/tn, где S1/t1, S2/t2, Sn/tn — формулы вычисления скорости на каждом отдельном участке всего пути S.

Таким образом, очень легко найти искомый параметр, используя данные выше формулы. Они очень просты, и как уже было указано, используются в начальных классах. Более сложные формулы базируются на этих же формулах и на тех же принципах построения и вычисления, но имеют другой, более сложный вид, больше переменных и разных коэффициентов. Это нужно для получения наиболее точного значения показателей.

Скорость в свободных условиях движения

В свободных условиях, когда дорога относительно пустая и вы можете выбирать скорость по своему усмотрению, казалось бы, все просто. Если следовать ПДД, то это 60 км/ч в городе, 80 км/ч на некоторых городских магистралях, 100 км/ч на МКАД, 90 км/ч за городом и 110 км/ч на магистрали. Ну и для любителей поиграть в кошки-мышки с законом, можно на эти значения набросить те самые «беспошлинные» 20 км/ч – ниже этого превышения штрафов нет. Но я сейчас не о штрафах, а о безопасности. Представим, что ограничений скорости нет, как, скажем на автобанах Германии. Значит, можно безнаказанно ехать с любой скоростью. А с какой скоростью ехать безопасно?

Безопасность = наличие резерва

Вспомним, что одно из условий совершения маневра – наличие запаса тяги. И что тяга двигателя – крутящий момент – зависит от показаний тахометра (см. статью «Безопасность вождения и крутящий момент двигателя»). Но способность двигателя разгонять машину зависит также и от скорости: чем ближе скорость движения автомобиля к максимальной, тем сложнее ускориться. Автомобиль хорошо ускоряется при небольших скоростях, и по мере приближения к максимальной скорости разгон происходит все медленнее. Кстати, еще несколько лет назад в технических характеристиках автомобилей BMW на сайте производителя приводилось два показателя времени разгона: для разгона от 0 до 100 км/ч и от 80 до 120 км/ч. Эти показатели были примерно равны между собой. То есть при разгоне с места автомобилю нужно столько же времени для ускорения на 100 км/ч, сколько при разгоне на большой скорости для ускорения всего на 40 км/ч. Чувствуете, к чему я клоню?

Даже если бы и была возможность хоть каждый день ездить на «максималке», все равно этого делать не стоит, потому что любое устройство, в том числе и двигатель, работая на максимуме, не имеет резерва.

Крейсерская скорость

Для сохранения запаса тяги двигателя необходимо ограничивать скорость движения и не приближаться к максимальному значению скорости. А насколько можно приближаться? Где граница? Оптимальная скорость составляет 60-70% от максимальной и называется крейсерской скоростью. Крейсерская скорость движения автомобиля – и есть та разумная граница, которую не стоит превышать, даже на свободных магистралях. То есть крейсерская скорость – максимальная безопасная скорость движения АВТОМОБИЛЯ.

Крейсерская скорость также является самой выгодной скоростью движения в плане соотношения времени в пути к расходу топлива, поэтому воздушные суда летают с крейсерской скоростью.

Перейду к конкретике. Например, для ВАЗ-2110 максимальная скорость по паспорту – 180 км/ч, а крейсерская скорость составляет 108 км/ч (60%). А если взять VW Touareg мощностью 240 л.с., то у него «максималка» по паспорту – 218 км/ч. И для него крейсерская скорость составит 130 км/ч. Не сильно больше, чем у «Лады», правда?

Таким образом, чтобы всегда иметь запас тяги мотора на случай экстренных действий и быть в безопасности, не превышайте крейсерскую скорость своей машины даже в свободных условиях движения. А поскольку максимальная разрешенная скорость в России – 130 км/ч, то нет и проблемы превышения крейсерской скорости 🙂 Так что соблюдайте правила, и все у вас будет в порядке!

Средняя скорость — движение — автомобиль

Средняя скорость движения автомобиля зависит от максимальной скорости, которую он может развить на дорогах различного качества, и от интенсивности разгона. Кроме того, на среднюю скорость автомобиля существенное влияние оказывают его тормозные свойства.

Средние скорости движения автомобилей приведены для дорог с усовершенствованным типом покрытия в хорошем состоянии.

Средняя скорость движения автомобиля составляет v км / час.

Средняя скорость движения автомобиля зависит от многих факторов: на нее влияют, с одной стороны, конструктивные особенности автомобиля, а с другой — дорожные условия. При испытаниях ее стремятся поддерживать максимально возможной. Чтобы полнее выяснить причины, вызывающие ограничение скорости, принято определять среднюю скорость чистого движения и среднюю техническую скорость.

Стремление повысить среднюю скорость движения автомобилей ( автопоездов) при одновременном увеличении их полной массы приводит к повышению мощности двигателя, что, в свою очередь, вызывает повышенные требования к трансмиссии автомобиля. Это непосредственно относится и к ведущему мосту, назначение которого состоит в изменении крутящего момента двигателя при передаче его к ведущим колесам таким образом, чтобы вместе с коробкой передач обеспечить согласование скоростной характеристики двигателя с динамической характеристикой автомобиля.

График, для определения нагрузочного режима трансмиссии автомобиля ( по нормали.

Угловую скорость рассчитываемых подшипников определяют по средней скорости движения автомобиля аа ср — с учетом соответствующего передаточного числа между валами коробки передач.

Эффективность действия тормозов оказывает влияние на среднюю скорость движения автомобиля, особенно в условиях городского движения.

Именно эта скорость имеется в виду, когда, например, говорят о средней скорости движения автомобиля или средней скорости поезда.

За эквивалентное число оборотов пэкв принимается число оборотов подшипника ( вала), соответствующее средней скорости движения автомобиля на основной ( прямой) передаче.

Установка на шасси автомобиля двигателя повышенной мощности, ранее практиковавшаяся в Америке, повышала среднюю скорость движения автомобиля, уменьшала его износы и шумность работы, но ухудшала топливную экономичность. Последнее объясняется тем, что в двигателях большей мощности и большого рабочего объема при работе на малых нагрузках возрастает относительная величина тепловых, насосных и механических потерь.

Расстояние между площадками для кратковременных остановок и стоянок автомобилей зависит от интенсивности движения на дороге, средней скорости движения автомобилей, вместимости стоянки и средней продолжительности пребывания автомобиля на стоянке.

Зависимость коэффициента сцепления от различных факторов.

В практике управления автомобилем важно знать н только максимальную скорость движения автомобиля на отдельных участках маршрута, но и среднюю скорость на всем маршруте. Возможность определения средней скорости движения автомобиля имеет практическое значение для осуществления планирования перевозок грузов и пассажиров на автомобильном транспорте.

Из выражения ( 34) следует, что чем выше удельная мощность, тем больше ускорение разгона и меньше продолжительность этапа разгона до установившейся скорости

В итоге следует ожидать повышения средней скорости движения автомобиля. Для того чтобы оценить степень влияния удельной мощности на среднюю скорость вследствие сокращения именно этого этапа цикла, рассмотрим процесс разгона автомобиля с учетом переключения передач.

Из выражения ( 34) следует, что чем выше удельная мощность, тем больше ускорение разгона и меньше продолжительность этапа разгона до установившейся скорости. В итоге следует ожидать повышения средней скорости движения автомобиля. Для того чтобы оценить степень влияния удельной мощности на среднюю скорость вследствие сокращения именно этого этапа цикла, рассмотрим процесс разгона автомобиля с учетом переключения передач.

Интерьер

Как сдать на категорию Е

Открытие данной категории предполагает теоретическую подготовку, практику вождения грузовика с прицепом под контролем инструктора, и сдачу финального экзамена с участием сотрудников ГАИ.

Обучение

Чтобы успешно сдать на права категории Е, прежде всего необходима твердая теоретическая база. Осваивать информацию можно как самостоятельно, приобретя билеты и подобрав к вопросам соответствующую литературу (и билеты, и учебники можно найти в электронном виде в Интернете), так и под руководством опытного специалиста, или же в составе учебной группы специализированной автошколы. Обучение платное. Сумма оплаты зависит от автошколы и региона. Например, в Москве цены колеблются в районе 25 тыс. рублей.

Подготовка к экзамену

Теоретическая часть включает в себя овладение знаниями об устройстве прицепов различных типов, их допустимой грузоподъемности, проходимости, устройство прицепных механизмов, методику агрегатирования, включая сцепку транспортных средств с тягачом.

Отдельно рассматриваются вопросы передачи пневматического или гидравлического усилия на тормозную систему прицепа, повторения сигнальных огней головной машины: правила их подсоединения, диагностики и ремонта в дорожных условиях.

Водительское удостоверение категории Е предусматривает также знание основ первой медицинской помощи и умение ее оказывать в дороге, используя подручные средства и препараты, входящие в штатную аптечку тягача с прицепом.

Обязательным также является практическая тренировка вождения автопоездов. Это происходит под руководством и контролем опытного инструктора, на специально выделенном для учебных целей полигоне. Практика вождения включает в себя определенное количество часов, и является чрезвычайно ценным опытом для будущего профессионала.

В рамках тренировки водитель не только начинает «чувствовать прицеп», но и учится безошибочно выполнять перестроения и манёвры. Опытный руководитель подскажет, как проезжать перекресток с многометровым прицепом-фурой, как, сдавая задом, не давать прицепу выворачиваться, объяснит допустимые для разных масс, высот и сцепки скорости вхождения в поворот.

Подготовка к экзамену должна включать в себя и сбор необходимых документов, которые потребуются для его сдачи. Бывает так, что в силу различных причин прохождение медкомиссии затягивается на длительное время, и кандидат на сдачу экзамена может попросту не успеть. О том, какие бумаги нужно готовить, читайте далее.

Средняя скорость при переменном движении

При неравномерном движении величина средней скорости сильно зависит от выбора промежутка времени движения тела.

Рассмотрим движение тела, которое свободно падает вниз. Закон движения при этом:

Для моментов времени $t_1=0,1\ $c координата тела (подставим время $t_1$ в формулу (4)) равна: $x_1=0,049\ $м; для $t_2=0,2\ $c$\ x_2=0,196$ м, тогда $\left\langle v\right\rangle $в промежутке времени от $t_1=0,1$ с до $t_2=0,2\ $c будет:

Если взять для того же свободно падающего тела промежуток времени от $t_1=0,7$ с до $t_2=0,8\ $c, то средняя скорость получится равной $\left\langle v\right\rangle =7,4\frac{м}{с}$.

Сушка двигателя на газу: вымысел или реальность

Коэффициент использования пробега (КИПр)

Определяет степень использования пробега автомобиля с грузом.

При работе автомобиля на линии различают пробеги: общий, с грузом, холостой и нулевой.

Общий пробег — это расстояние в километрах, проходимое автомобилем в течение рабочего дня.

Пробег с грузом является производительным пробегом.

Холостой пробег — это пробег автомобиля без груза между пунктами разгрузки и погрузки.Нулевой пробег — это пробег автомобиля от парка до пункта погрузки и с последнего пункта разгрузки до парка, а также проезды на заправку топливом.Коэффициент использования пробега определяют по формуле:

где: Sгp — пробег с грузом, км; Sо.пр — общий пробег автомобиля, км.

Пример. Общий пробег автомобиля за день составил 320 км, с грузом — 244 км. Определить КИПр.

Решение.

Величина коэффициента использования пробега зависит от размещения пунктов погрузки и разгрузки, характера грузопотоков и организации диспетчерской службы на линии. Водители-новаторы добиваются сокращения непроизводительных пробегов за счет перевозки попутных грузов. Например, при перевозке сахарной свеклы с поля на сахарный завод они используют обратные рейсы для перевозки на поля минеральных удобрений.

Аналоговые

Ленточный – скорость показывает лента, проходящая через деления на неподвижной шкале. Использовался на многих американских и некоторых японских и европейских моделях, а также на ГАЗ-24 до начала 1975 года.

Барабанный — деления нанесены на вращающийся барабанчик и при его вращении появляются в окошке, показывая текущую скорость. Применялся на многих довоенных автомобилях, некоторых американских автомобилях шестидесятых, а также – относительно современных моделях «Ситроена».

Стрелочный – наиболее распространённый вариант спидометра, скорость указывает вращающаяся вокруг оси стрелка.

Средняя скорость равномерного движения

Только при равномерном движении средняя скорость является постоянной величиной и не зависит от выбора промежутка времени, в который движется тело. При равномерном движении материальной точки по оси X кинематические уравнения для перемещения запишем как:

Тогда:

Найдем среднюю скорость движения, используя определение (3) и выражения (6):

Для оценки численной величины средней скорости на практике используют следующее определение $\left\langle v\right\rangle $: средняя скорость равна отношению пройдённого пути (s) ко времени (t), которое было затрачено на движение:

Определяемая таким образом средняя скорость является скалярной величиной.

Частные случаи формул для вычисления скорости

Если модуль скорости не изменяется во времени, то такое движение называют равномерным (v=const).
При равномерном движении скорость можно вычислить, применяя формулу:

где s– длина пути, t – время, за которое материальная точка преодолела путь s.

При ускоренном движении скорость можно найти как:

где $\bar{a}$ – ускорение точки,
$t_{1} \leq t \leq t_{2}$ – отрезок времени, в течение которого рассматривается скорость.

Если движение является равнопеременным, то применяется следующая формула для вычисления скорости:

где $\bar{v}_0$ – начальная скорость движения,
$\bar{a} = const$ .

Среднее значение

Каждый из нас в жизни встречается с выражениями «в среднем», «средняя температура», «средний заработок». Что это значит?

Рассмотрим на конкретной задаче.

Три друга Иван, Костя и Владимир каждую среду идут вместе от школы до музыкальной студии, где учатся игре на гитаре. Иван от школы до студии насчитал 251 шаг. Костя – 248 шагов, а Владимир насчитал 254 шага. Сколько в среднем шагов от школы до музыкальной студии?

В математике существует понятие «среднее арифметическое». Чтобы найти среднее арифметическое в этой задаче, нужно сложить количество шагов трех друзей, а затем полученную сумму разделить на 3 (по количеству слагаемых).

251 + 248 + 254 = 753 шага.

753 : 3 = 251 шаг

Можно сказать, что от школы до музыкальной студии в среднем 251 шаг.

Составим алгоритм.

Например, найти среднее арифметическое чисел: 5, 8, 7, 4.

Находим сумму чисел 5 + 8 + 7 + 4 = 24

Количество слагаемых – 4, значит, полученную сумму разделим на 4.

24 : 4 = 6

Среднее арифметическое – 6.

Пользуясь алгоритмом, найдите среднее арифметическое чисел: 12, 10, 8.

Проверь себя.

12 + 10 + 8 = 30

30 : 3 = 10

Среднее арифметическое – 10.

Рассмотрим более сложную задачу на нахождение среднего арифметического.

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».

Итак, прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.

Уравнение движения для равноускоренного движения

x(t) = x0 + v0xt + axt^2/2

x(t) — искомая координата
x0 — начальная координата
v0x — начальная скорость тела в данный момент времени [м/с]
t — время
ax — ускорение [м/с^2]

Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:

Формула конечной скорости

→          → v = v0 + at


v — конечная скорость тела [м/с]
v0 — начальная скорость тела [м/с]
t — время

a — ускорение [м/с^2]

Задача

Найдите местоположение автобуса через 0,5 часа после начала движения, разогнавшегося до скорости 60 км/ч за 3 минуты.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

v = v0 + at
a = v — v0 / t

Так как автобус двигался с места, v0 = 0. Значит
a = v/t

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

Подставим значения:
a = v/t = 60/0,05 = 1200 км/ч^2
Теперь возьмем уравнение движения.
x(t) = x0 + v0xt + axt^2/2

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

x(t) = axt^2/2

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

Подставим циферки:
x = 1200*0,5^2/2 = 1200*0,522= 150 км

Ответ: через полчаса координата автобуса будет равна 150 км.

Движение по реке. Скорость течения реки

      В отличие от задач на движение по суше, в задачах на движение по реке появляется новая величина – скорость течения реки.

      По отношению к берегу, который неподвижен, скорость тела, движущегося по течению реки, равна сумме собственной скорости тела (скорости тела по озеру, скорости тела в неподвижной воде, скорости тела в стоячей воде) и скорости течения реки. По отношению к берегу скорость тела, движущегося против течения реки, равна разности собственной скорости тела  и скорости течения реки.

      Задача 4. Моторная лодка прошла по течению реки   14   км, а затем   9   км против течения, затратив на весь путь   5   часов. Скорость лодки в стоячей воде   5   км/час. Найдите скорость течения реки.

      Решение. Обозначим буквой   v   скорость течения реки и будем считать, что скорость   v   измеряется в км/час.Изобразим данные, приведенные в условии задачи 4, на рисунке 3.

Рис. 3

      Тогда

      5 + v   – скорость, с которой лодка шла по течению реки (в км/час);

      – время движения лодки по течению реки (в часах);

      5 – v   – скорость, с которой лодка шла против течения реки (в км/час);

      – время движения лодки против течения реки (в часах);

      Теперь можно составить уравнение, принимая во внимание тот факт, что лодка находилась в пути   5   часов:

      Решим это уравнение:

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   2   км/час.

      Задача 5. (Бюро «Квантум») Моторная лодка прошла по течению реки   34   км и   39   км против течения, затратив на это столько же времени, сколько ей нужно, чтобы пройти   75   километров в стоячей воде. Найдите отношение скорости лодки в стоячей воде к скорости течения реки.

      Решение. Обозначим   vс   (км/ч) скорость лодки в стоячей воде и обозначим   vр   (км/ч) скорость течения реки. Изобразим данные задачи 5 на рисунках 4 и 5.

Рис. 4

Рис. 5

      Учитывая тот факт, что в обеих ситуациях лодка провела в пути одно и то же время, можно составить уравнение:

(3)

      Если ввести обозначение

то, воспользовавшись формулой

vс = xvр ,

перепишем уравнение (3) в виде

(4)

      Умножая уравнение (4) на   vр ,   получим

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   7,5 .

Средняя скорость — машина

Средняя скорость машин ЕС-1030 по Гибсону составляет 100 тыс. операций в секунду.

Под средней скоростью машины понимают среднюю линейную скорость одной из точек ведущего вала машины во время ее установившегося движения.

Для того чтобы средняя скорость машины могла оставаться постоянной, необходимо, чтобы при этой скорости имело место равновесие между работой движущих сил и работой сопротивлений. Но это равновесие может нарушаться по различным причинам.

Для установления козфициента нагрузки двигателя определим среднюю скорость машины v — кгк, момент трения по формуле ( 55), угловую скорость машины ( см. фиг.

Очевидно, что такая система позволяет на уровне программирования заботиться о том, чтобы информация была заранее считана в быстрые регистры операндов и арифметическое устройство не ожидало ее поступления из памяти. Средняя скорость машины CDC-6600 оценивается в 3 5 млн. операций в секунду, однако, как утверждают разработчики, при оптимальном программировании она может быть значительно повышена.

Сравнение формул ( 52) и ( 58) дает следующий вывод: коэфициент нагрузки двигателя на повороте при бортовых фрикционах в два раза меньше, чем при простом дифе-ренциале. Это снижение нагрузки достигается за счет снижения потери в тормозе, а также вследствие понижения средней скорости машины на повороте. Зависимость между коэ-фициентами нагрузки двигателя и параметром поворота показана на диаграмме фиг.

Регуляторы являются приборами, предназначенными для того, чтобы удерживать в возможно близких друг к другу пределах изменения средней скорости машины, вызванные изменениями движущих сил или сил сопротивлений.

Если бы движение машины было равномерно, если бы она шла всегда одинаково быстро, то оценка 40 км в час полностью характеризовала бы ее скорость — одну и ту же в любой момент движения. Но машина движется неравномерно; за час скорость ее много раз резко меняется, и когда нам говорят, что машина прошла в час 40 км, то это дает нам представление лишь о некоторой средней скорости машины за этот час и ничего не говорит о скорости ее в тот или другой определенный момент, в том или другом определенном месте ее пути. Час — это слишком большой промежуток времени, за который скорость движения машины может меняться много раз.

Средняя скорость машины при выполнении арифметики тем самым приблизительно равна 10000 операций в секунду. При выполнении логических программ быстродействие резко возрастает. В минимальном комплекте в состав процессора входит оперативная память объемом 8192 байта. Правда, объем памяти при необходимости может быть расширен до 64 Кбайт.

На маршруте ABCDE длиной 147 км Турист может сам выбирать способ передвижения. На обратном пути из пункта Е в пункт А он поступил по-другому: до пункта D дошел пешком, преодолев расстояние в 24 км, в пункте D пересел на лошадь и добрался до пункта В за 3 ч 20 мин, а от пункта Л до пункта А доехал на машине за 1 ч 12 мин. Определите скорость передвижения туриста на машине и на лошади, если средние скорости машины и лошади были постоянными при движении от А к S и обратно.

Уровень B

1. О какой скорости – средней или мгновенной – идет речь в следующих случаях:

а) пуля вылетает из винтовки со скоростью 800 м/с;

б) скорость движения Земли вокруг Солнца 30 км/с;

в) на участке дороги установлен ограничитель максимальной скорости – 60 км/ч;

г) мимо вас проехал автомобиль со скоростью 72 км/ч;

д) автобус преодолел расстояние между Могилевом и Минском со скоростью 50 км/ч?

2. Путь в 63 км от одной станции до другой электропоезд проходит за 1 ч 10 мин со средней скоростью 70 км/ч. Какое время занимают остановки?

3. Самоходная косилка имеет ширину захвата 10 м. Определите площадь поля, скошенного за 10 мин, если средняя скорость косилки 0,1 м/с.

4. На горизонтальном участке пути автомобиль ехал со скоростью 72 км/ч в течение 10 мин, а затем проехал подъем со скоростью 36 км/ч за 20 мин. Чему равна средняя скорость на всем пути?

5. Велосипедист первую половину времени при переезде из одного пункта в другой ехал со скоростью 12 км/ч, а вторую половину времени (из-за прокола шины) шел пешком со скоростью 4 км/ч. Определите среднюю скорость движения велосипедиста.

6. Школьник проехал 1/3 всего времени на автобусе со скоростью 60 км/ч, еще 1/3 всего времени на велосипеде со скоростью 20 км/ч, остальное время прошел со скоростью 7 км/ч. Определите среднюю скорость движения школьника.

7. Велосипедист ехал из одного города в другой. Половину пути он проехал со скоростью 12 км/ч, а вторую половину (из-за прокола шины) шел пешком со скоростью 4 км/ч. Определите среднюю скорость его движения.

8. Из одного пункта в другой мотоциклист двигался со скоростью 60 км/ч, обратный путь им был пройден со скоростью 10 м/с. Определите среднюю скорость мотоциклиста за все время движения.

9. Школьник проехал 1/3 пути на автобусе со скоростью 40 км/ч, еще 1/3 пути на велосипеде со скоростью 20 км/ч, последнюю треть пути прошел со скоростью 10 км/ч. Определите среднюю скорость движения школьника.

10. Пешеход часть пути прошел со скоростью 3 км/ч, затратив на это 2/3 времени своего движения. Оставшееся время он прошел со скоростью 6 км/ч. Определите среднюю скорость.

11. Скорость поезда на подъеме 30 км/ч, а на спуске – 90 км/ч. Определите среднюю скорость на вcем участке пути, если спуск в два раза длиннее подъема.

12. Половину времени при переезде из одного пункта в другой автомобиль двигался с постоянной скоростью 60 км/ч. С какой постоянной скоростью он должен двигаться оставшееся время, если средняя скорость движения равна 65 км/ч?

Математическое обнаружение скрытой ошибки

В решаемом нами примере пройденный телом (поездом или пешеходом) путь будет равен произведению nS n (так как мы n раз складываем равные участки пути, в приведённых примерах — половинки, n = 2 , или трети, n = 3 ). О полном же времени движения нам ничего не известно. Как определить среднюю скорость, если знаменатель дроби (3) явно не задан? Воспользуемся соотношением (2), для каждого участка пути определим t n = S n: v n .Суммурассчитанных таким образом промежутков времени запишем под чертой дроби (3). Ясно, что, для того чтобы избавиться от знаков «+», нужно приводить все S n: v n к общему знаменателю. В результате получается «двухэтажная дробь». Далее пользуемся правилом: знаменатель знаменателя идёт в числитель. В итоге, для задачи с поездом после сокращения на S n имеем v ср = nv 1 v 2: v 1 + v 2 , n = 2 (4) . Для случая с пешеходом вопрос -, как найти среднюю скорость, решается ещё сложнее: v ср = nv 1 v 2 v 3: v 1v2 + v 2 v 3 + v 3 v 1 , n = 3 (5).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector